DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation.
نویسندگان
چکیده
Ultrafine and well dispersed CoAuPd nanoparticles grown on a DNA-reduced-graphene-oxide (DNA-rGO) composite have been successfully synthesized using a DNA-directed method. The resultant CoAuPd/DNA-rGO composite exhibits high activity and 100% H2 selectivity toward the dehydrogenation of formic acid without any additive at 298 K.
منابع مشابه
An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature.
Nowadays, searching for the effective hydrogen (H2) storage/ generation materials remains one of the most difficult challenges toward a fuel-cell-based H2 economy as a longterm solution for secure energy in future. Formic acid (FA, HCOOH), a major product of biomass processing with highenergy density, nontoxicity, and excellent stability at room temperature, has recently attracted tremendous re...
متن کاملAg/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation
The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...
متن کاملAmine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid.
Herein we show that a previously unappreciated combination of CrAuPd alloy nanoparticles and amine-grafted silica support facilitates the liberation of CO-free H2 from dehydrogenation of formic acid with record activity in the absence of any additives at room temperature. Furthermore, their excellent catalytic stability makes them isolable and reusable heterogeneous catalysts in the formic acid...
متن کاملPropane oxidative dehydrogenation over vanadium oxide nanostructures supported on porous graphene prepared by hydrothermal method
In this study at first, in laboratory, three types of vanadium oxide were produced by using porous graphene and amine framework in hydrothermal method nanostructures such as: vanadium oxide - octadecyl amine - graphene, vanadium oxide - dodecyl amine - graphene and vanadium oxide – aniline - graphene (V-ODA-G، V-DDA-G، V-A-G). Then their structures and functions in propane dehydrogenation react...
متن کاملMesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition
For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 21 شماره
صفحات -
تاریخ انتشار 2014